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Abstract

In a previous work, we used a polarization condition to show that there is a family ofU(1) symmetric
solutions of the vacuum Einstein equations onΣ × S1 × R (Σ any two-dimensional manifold) such
that each exhibits AVTD1 behavior in the neighbourhood of its singularity. Here we consider the
general case ofS1 bundles over the baseΣ × R and determine a condition, called the half polarization
condition, necessary and sufficient in our context, for AVTD behavior near the singularity.
© 2005 Published by Elsevier B.V.
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1. Introduction

A rigorous study of the singularities in cosmological solutions of the vacuum Einstein
equations has been hampered by the fact that the generic such solution is expected to
have a singularity of the oscillatory type predicted by Belinsky, Lifshitz and Khalatnikov
[BLK]. There is currently no satisfactory mathematical method for treating such oscillating
singularities, at least when the spacetimes under study are spatially inhomogeneous. For
this reason much effort has gone into the study of families of solutions which have milder

1 Asymptotic velocity term dominated.
∗ Corresponding author.

0393-0440/$ – see front matter © 2005 Published by Elsevier B.V.
doi:10.1016/j.geomphys.2005.06.011



1200 Y. Choquet-Bruhat, J. Isenberg / Journal of Geometry and Physics 56 (2006) 1199–1214

cosmological singularities such as those of AVTD (asymptotically velocity term dominated)
type, for which rigorous, so called Fuchsian, methods are available.

To suppress the oscillatory behavior expected for the generic solution, one can:

(i) introduce suitable matter sources such as scalar fields and study the solutions of the
associated non vacuum field equations[7],

(ii) study higher dimensional models motivated by string or supergravity theories wherein
(for sufficiently high dimensions at least) the oscillations are naturally suppressed[8],
or

(iii) remain in 3+ 1 dimensions but impose a combination of symmetry and polarization
conditions in order to achieve the desired AVTD behavior.

For the case ofU(1) symmetric vacuum solutions on the trivialS1 bundleT 2 × R×
S1 → T 2 × R (with U(1) symmetry imposed on the circular fibers) Isenberg and Moncrief
[5] have showed, using Fuchsian methods, that AVTD behavior is achieved provided the
solutions considered are at least half polarized in a certain well defined sense. The half
polarization condition includes, as a special case, the fully polarized solutions wherein the
3 planes orthogonal to orbits of theU(1) isometry action are integrable and the vacuum
3 + 1 field equations reduce to a system of 2+ 1 dimensional Einstein equations coupled to
a massless scalar field on the quotient manifoldT 2 × R. The more general (half polarized)
solutions admit, in addition, half the extra (asymptotic) Cauchy data expected for a fully
general, non polarized solution of the same (U(1) symmetric) type. On the basis of numerical
studies due to Berger and Moncrief the fully general, non polarizedU(1) symmetric vacuum
solution onT 2 × R× S1 → T 2 × R is expected to have an oscillatory singularity and hence
not to be amenable to Fuchsian analysis[1].

Choquet-Bruhat, Isenberg and Moncrief have extended the analysis given in[5] to cover
the case of polarizedU(1) symmetric vacuum solutions on manifolds of the more general
typeΣ2 × R× S1 → Σ2 × R, whereΣ2 is an arbitrary compact surface and the bundle (in
view of the assumed polarization condition) is necessarily trivial. In the present paper the
polarization restriction is eliminated in favor of an appropriate half polarization condition
and the limitation to trivialS1 bundles over the baseΣ2 × R is also removed. The present
work thus demonstrates the existence of a large family of vacuumU(1) symmetric solutions
of half polarized type defined on trivial and non trivial bundles overΣ2 × R (with Σ2 an
arbitrary compact surface) and having AVTD singularity behavior. The half polarization
condition used in[5] involved requiring one of the asymptotic functions to vanish. The
half polarization condition which we find here necessary and sufficient for possible AVTD
behavior can be understood in terms of the behavior of the VTD solutions to which our
solutions converge as one approaches the singularity. Specifically a VTD solution is half
polarized if and only if the set of geodesics in the Poincaré plane which represent it (at
different spatial points) all tend to the same point ast approaches the singularity.

2. Einstein equations

A spacetime metric on a manifoldV4 ≡ M × R, with M an S1 principal fiber bundle
over a surfaceΣ, reads, if it is invariant under theS1 action onV4,
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(4)g ≡ e−2φ(3)g+ e2φ(dθ + A)2 (2.1)

with θ a parameter on the (spacelike) circular orbit,φ a scalar,A a locally defined one-form
and(3)g a lorentzian metric, all onV3 := Σ × R.

The vacuum 3+ 1 Einstein equationsRicci((4)g) = 0 for such anS1 symmetric metric
onV4 are known[2,3] to be equivalent2 to the wave map equation from (V3,

(3)g) into the
Poincaŕe planeP =: (R2,G),Φ ≡ (φ, ω): V3 → R2, where

G ≡ 2(dφ)2 + 1

2
e−4γ (dω)2, (2.2)

coupled to the 2+ 1 Einstein equations for(3)g onV3 with the wave map as the source field.
The scalar functionω onV3 is linked to the differentialF of A by the relation

dω = e4φ ∗ F, with F = dA. (2.3)

Thus in local coordinatesxα, α = 0,1,2, on V3, with η the volume form of(3)g =(3)

gαβ dxα dxβ, one has

Fαβ ≡ 1

2
e−4φηαβλ∂

λω. (2.4)

The wave map equations are, with(3)∇ the covariant derivative in the metric(3)g

gαβ
(

(3)∇α∂βφ + 1

2
e−4φ∂αω∂βω

)
= 0, (2.5)

gαβ((3)∇α∂βω − 4∂αω∂βφ) = 0. (2.6)

The 2+ 1 Einstein equations are, with “·” indicating a scalar product in the metricG

(3)Rαβ = ∂αΦ · ∂βΦ. (2.7)

To solve these equations we choose for(3)g a zero shift, we denote the lapse by eλ and we
weigh by eλ, without restricting the generality, thet dependent space metricg = gab dxa dxb,
a, b = 1,2. That is, we set

(3)g ≡ −N2 dt2 + gab dxa dxb with N ≡ eλ, gab ≡ eλσab. (2.8)

We denote byσab the contravariant form ofσ. The extrinsic curvature ofΣt in (V3,
(3) g) is

kab := − 1

2N
∂tgab ≡ −1

2
(σab∂tλ+ ∂tσab). (2.9)

The mean extrinsic curvatureτ is therefore

τ := gabkab ≡ −e−λ
(
∂tλ+ 1

2
ψ

)
, (2.10)

where we have defined

ψ := σab∂tσab. (2.11)

2 If we choose an arbitrary harmonic one-form appearing in the solution to be zero.
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The connection coefficients (Christoffel symbols) of(3)g are found to be (note that
(3)g00 = −e−2λ,(3) gab = gab = e−λσab)

(3)Γ abc = Γ cab(g) = Γ cab(σ) + 1

2
(δcb∂aλ+ δca∂bλ− σcdσab∂dλ), (2.12)

(3)Γ 00
0 = ∂tλ

(3)Γ 0a
0 = ∂aλ,

(3)Γ 00
a = σab eλ∂aλ, (2.13)

(3)Γ ab0 = −e−λkab, (3)Γ a0b = −eλkba. (2.14)

In particular it holds that

(3)gαβ(3)Γ 0
αβ = 1

2
ψ e−2λ. (2.15)

We see that the metric(3)g is in harmonic time gauge if and only ifψ = 0.
The Einstein equations split into constraints and evolution equations. We denote by

Sαβ ≡(3) Rαβ − 1
2δ
α(3)
β R the Einstein tensor of(3)g, by Tαβ the stress energy tensor ofΦ, and

we setΣαβ ≡ Sαβ − Tαβ . The constraints are:

C0 ≡ Σ0
0 ≡ −1

2
{R(g) − k · k + τ2 − e−2λ∂tΦ · ∂tΦ− gab∂aΦ · ∂bΦ} = 0 (2.16)

and (indices raised withgab, ∇ the covariant derivative in the metricg)

Ca ≡ eλΣ0
a ≡ −{∇bkba − ∂aτ + e−λ∂aΦ · ∂tΦ} = 0. (2.17)

The evolution equations are, withN = eλ,

N((3)Rba − ρba) ≡ −∂tkba +Nτkba − ∇b∂aN +NRba −N∂aΦ · ∂bΦ = 0. (2.18)

In order to obtain a first order system in the Fuchsian analysis that we will make, we
introduce auxiliary unknownsΦt ,Φa, σabc which are identified with the first partial deriva-
tives ofΦ and the covariant derivative ofσ with respect to a givent independent metric̃σ.
These new unknowns satisfy the evolution equations

∂tΦ = Φt, (2.19)

∂tΦa = ∂aΦt, (2.20)

∂tσ
ab
c = ∇̃c∂tσab, (2.21)

where, by the definitions ofσ andk,

∂tσ
ab = 2 e2λkab + σab∂tλ. (2.22)

The functionλ is not left unknown, but rather is determined by a gauge condition from its
VTD value.

3. VTD equations and solutions

The Velocity Terms Dominated equations are obtained by dropping the space derivatives
in the equations.
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We denote by a tilde quantities which are independent oft, and we denote VTD solutions
using a hat.

3.1. Einstein evolution VTD solutions

In order to obtain a global (onΣ) formulation we choose a VTD metric which remains
in a fixed conformal class overΣ ast evolves; we set

σ̂ab = σ̃ab and ĝab = eλ̂σ̃ab. (3.1)

Then

ψ̂ = 0, ĝab = e−λ̂σ̃ab, ∂t ĝab = eλ̂σ̃ab∂tλ̂, (3.2)

and the definition ofk gives that

k̂ab = −1

2
σ̃ab∂tλ̂, k̂ba = −1

2
e−λ̂δba∂tλ̂, τ̂ := k̂aa = −e−λ̂∂t λ̂. (3.3)

Requiring that these VTD quantities satisfy the VTD evolution equations, we obtain

∂tk̂
b
a = N̂τ̂k̂ba. (3.4)

Therefore, by straightforward computation

∂2
tt λ̂ = 0; henceλ̂ = λ̃− ṽt (3.5)

with λ̃ andṽ arbitrary functions onΣ, independent oft. Then we have

k̂ab = 1

2
ṽσ̃ab, k̂ba = 1

2
ṽe−λ̂δba, τ̂ = e−λ̂ṽ. (3.6)

3.2. Wave map VTD solutions

The results for a VTD wave map are very different from the results obtained for a scalar
function [4]. If we drop space derivatives in the wave map equations we obtain geodesic
equations in the target manifold, witht the length parameter on these geodesics so long as
the 2+ 1 metric is in harmonic time gauge. If we make the change of coordinatesY = e2φ

in the target (which defines a diffeomorphism fromR2 onto the upper half planeY > 0),
the metricG takes a standard form for the metric of a Poincaré half plane; namely

G ≡ 1

2

{
dω2 + dY2

Y2

}
, Y = e2φ. (3.7)

The VTD, geodesic, equations written in this metric read, with a prime denoting the deriva-
tive with respect tot

ω′′ − 2Y−1ω′Y ′ = 0, (3.8)

Y ′′ + Y−1ω′X′ = 0. (3.9)
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The general solution of these geodesic equations is represented in these coordinates, as is
well known, by half circles3 centered on the lineY = 0; specifically, withA andB arbitrary
constants (that is, independent oft), the solution takes the form

ω̂ = B + A cosθ, Ŷ = A sin θ, 0< θ < π. (3.10)

These functionsω andY satisfy the differential equations(3.8), (3.9) if and only if it holds
that:

θ′′

θ′
= cosθ

sin θ
θ′. (3.11)

Integrating this equation we have that, withw̃ independent oft

θ′ = −w̃ sin θ. (3.12)

Another integration gives that, with̃Θ independent oft

tan
θ

2
= Θ̃ e−w̃t . (3.13)

If we now make the substitutionA = e2φ̃ andB = ω̃, then(3.10)reads

φ̂ = φ̃ + 1

2
log(sin θ), ω̂ = ω̃ + e2φ̃ cosθ. (3.14)

Remark 3.1. The set of above formulas is identical to the following one

ω̂ ≡ ω̃ + e2φ̃ 1 − Θ̃2 e−2w̃t

1 + Θ̃2 e−2w̃t
, e2φ̂ ≡ Ŷ = e2φ̃ 2Θ̃ e−w̃t

1 + Θ̃2 e−2w̃t
. (3.15)

Ŷ tends to zero whent tends to∞, but ω̂ tends toω̃ + e2φ̃.

3.3. Einstein constraint VTD solutions.

We deduce from(3.14) and (3.12)that

∂tφ̂ ≡ 1

2
Ŷ−1Ŷ ′ = 1

2

cosθθ′

sin θ
= −1

2
w̃ cosθ (3.16)

and

e−2φ̂∂tω̂ = −θ′ = w̃ sin θ. (3.17)

The Einstein VTD constraints reduce to the following equation:

2Ĉ0 ≡ −k̂ · k̂ + τ̂2 − e−2λ̂
{

2(∂tφ̂)2 + 1

2
e−4φ̂(∂tω̂)2

}
= 0. (3.18)

3 We discard here the special case which corresponds to the polarized case, treated elsewhere, where these circles
are centered at infinity. The geodesics are then the half linesX ≡ ω = constant.
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We have, using(3.16) and (3.17),

2(∂tφ̂)2 + 1

2
e−4φ̂(∂tω̂)2 = 1

2
w̃2. (3.19)

We deduce therefore from(3.6) that the VTD constraint(3.18)is satisfied if and only if

ṽ2 = w̃2. (3.20)

4. Fuchsian expansion

4.1. 2 + 1 metric expansions

For the unknownsσ andk we choose the following expansions, with the variousε′s
being positive numbers to be chosen later

σab = σ̃ab + e−εσ tuabσ , (4.1)

kba = e−λ
(

1

2
ṽδba + e−εktubk,a

)
. (4.2)

Then

τ ≡ kaa = e−λ(ṽ+ e−εktuak,a). (4.3)

We take as a gauge condition

λ = λ̂; hence∂tλ = −ṽ. (4.4)

Comparing the expressions(4.4) and (2.10)for τ, we find that this condition is equivalent
to the gauge fixing requirement

e−εktuak,a + 1

2
ψ = 0. (4.5)

4.2. Wave map expansion

We expandΦ near its VTD value; that is we set

φ = φ̂ + e−εφtuφ with φ̂ = φ̃ + 1

2
log(sin θ), (4.6)

while forω, for convenience of computation, we choose to set

ω = ω̂ + e2φ e−εωtuω with ω̂ = ω̃ + e2φ̃ cosθ. (4.7)

4.3. Expansion for first derivatives

We expand the auxiliary unknowns near the values of the derivatives of the VTD solution.
That is we set (see(3.16)and(3.17))

φt = ∂tφ̂ + e−εφt tuφt ≡ −1

2
w̃ cosθ + e−εφt tuφt , (4.8)
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ωt = ∂tω̂ + e2φ e−εωt uωt ≡ e2φ̃w̃ sin2 θ + e2φ e−εωt uωt . (4.9)

The expansions ofφa andωa are defined similarly by setting

φa = ∂aφ̂ + e−εφ′uφa, ωa = ∂aω̂ + e2φ e−εω′ tuωa . (4.10)

We next compute∂aφ̂ and∂aω̂. It follows from (3.14)that

∂aφ̂ = ∂aφ̃ + cosθ

2 sin θ
∂aθ, ∂aω̂ = ∂aω̃ + e2φ̃(2 cosθ∂aφ̃ − sin θ∂aθ). (4.11)

We compute∂aθ using(3.13)and elementary properties of sine and cosine. We find that

∂aθ = Θ̃−1 sin θ∂a(Θ̃− tw̃). (4.12)

Therefore it holds that

∂aφ̂ = ∂aφ̃ + Θ̃−1 cosθ

2
∂a(Θ̃− w̃t). (4.13)

Then, writing∂aω̂ as sum of a term independent oft plus terms tending to zero whent tends
to infinity, we have

∂aω̂ ≡ ∂a(ω̃ + e2φ̃) − e2φ̃[2(1 − cosθ)∂aφ̃ − Θ̃−1 sin2 θ∂a(Θ̃− w̃t)]. (4.14)

Forσabc , since∇̃cσ̃ab = 0, we set

σabc ≡ e−εσ′ tuabσ′,c. (4.15)

5. Fuchsian system for the evolution equations

Given the Fuchsian expansions of the previous section, the Einstein-wave map evolution
system reads as a first order system for the set of unknownsU ≡ (uσ, uk, uΦ, uΦt , uΦ′ , uσ′ ).

The differential system forU is Fuchsian in a neighbourhood oft = +∞ if it takes the
form

∂tU − LU = e−µtF (t, x, U, ∂̃U) (5.1)

with L a linear operator independent oft with non negative eigenvalues,µ a positive number
andF a set of tensor fields linear iñ∂U, continuous int, analytic inx andU and uniformly
Lipshitzian in all its arguments in a neighbourhood ofU = 0, for t large enough.

5.1. Einstein evolution equations

5.1.1. Equation for uσ
The Fuchsian expansion(4.2) for k yields the following equation:

∂tg
ab ≡ 2Nkab ≡ 2 eλgackbc ≡ e−λ(ṽσab + 2 e−εktσacubk,c). (5.2)

Usinggab ≡ e−λσab and∂tλ = −ṽ, we have

∂tg
ab ≡ e−λ(ṽσab + ∂tσ

ab). (5.3)
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Combining these equations together with the Fuchsian expansion ofσ results in the equation:

∂tu
ab
σ − εσu

ab
σ = 2 e(εσ−εk)tσacubk,c, (5.4)

which is of Fuchsian type ifεk > εσ > 0.

5.1.2. Equation for uk
The Fuchsian expansion ofk together withN = eλ and∂tλ = −ṽ imply by straightfor-

ward computation that

∂tk
b
a ≡ e−λ

{
1

2
ṽ2δba + e−εkt(ṽ− εk)u

b
k,a + e−εkt∂tubk,a

}
, (5.5)

and

Nτkba ≡ e−λ{( 1
2 ṽ

2δba + ṽe−εktubk,a) + e−εktuck,c(
1
2 ṽδ

b
a + e−εktubk,a). (5.6)

We see that e−λṽ2 disappears from the difference∂tkba −Nτkba, which motivates the choice
of the Fuchsian expansion.

To write the evolution Eq.(2.18)for k we now compute

∇b∂aN ≡ e−λσbc∇c∂a eλ ≡ σbc[∂cλ∂aλ+ ∂a∂cλ− Γ dac(g)∂dλ]. (5.7)

On the other hand, sinceΣ is two-dimensional andg is conformal toσ with a factor eλ, we
have that

NRba ≡ eλRba ≡ 1

2
eλδbaR(g) = 1

2
δba{R(σ) −�σλ}. (5.8)

>From these results, if we define

fba (t, u, ux) := −∇b∂aN +NRba −N∂aΦ · ∂bΦ

then we calculate

fba ≡ σbc[∂cλ∂aλ+ ∂a∂cλ− Γ dac(g)∂dλ] + 1

2
δba[R(σ) −�σλ] − σbcΦa ·Φc. (5.9)

We see thatfba is at most a second order polynomial int, is analytic inx whenṽ, w̃, λ̃, σ̃
are analytic; is linear in∂u; and is analytic, bounded and Lipshitzian inu for u bounded and
for large4 t, except eventually for the last term which reads

σbcΦa ·Φc = 2σbc
(
φaφc + 1

2
e−4φωaωc

)
. (5.10)

The expansion(4.10)of φa shows that it does not cause problems for the boundedness of
fba . However the expansion ofωa gives

e−2φωa = e−2φ∂a(ω̃ + e2φ̃) − e−2φ+2φ̃[2(1 − cosθ)∂aφ̃

+ Θ̃−1 sin2 θ∂a(Θ̃− w̃t)] + e−εω′ tuωa . (5.11)

4 This restriction ont comes from the covariant components ofσ which remain bounded as long asσab remains
positive definite.
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It follows from (4.6) that

e2(φ̃−φ) = e−2δφ

sin θ
with δφ ≡ e−εφtuφ.

Therefore, using (1− cosθ)/ sin θ = tan(θ/2) we have:

e−2φωa = e2φ̃ e−2δφ

sin θ
∂a(ω̃ + e2φ̃) − e−2δφ

×
[
2 tan

θ

2
∂aφ̃ + Θ̃−1 sin θ∂a(Θ̃− w̃t)

]
+ e−εω′ tuωa . (5.12)

We see that e−2φωa will increase like (sinθ)−1 - that is, like ẽwt - as t tends to infinity,
except if

ω̃ + e2φ̃ = constant. (5.13)

Condition(5.13)is a generalization of the condition imposed on the fields in[5], with other
notations, to obtain AVTD behavior, in the case thatΣ is a torus. Following the terminology
of [5] we call Eq.(5.13)the “half polarization” condition. Its geometric meaning is that the
set of geodesics in the Poincaré plane representing the VTD solution all tend to the same
point of the axisY = 0 ast tends to infinity.

After inserting the Fuchsian expansions and multiplying by eλ+εk :t we find that Eq.(2.18)
takes the form

∂tu
b
k,a − εku

b
k,a − 1

2
vδbau

c
k,c = e−εktuck,cu

b
k,a + eλ+εktf ba (t, u, ux). (5.14)

Sinceλ = λ̃− ṽt and ṽ = w̃ this system can take a Fuchsian form only if the functions
ω̃ andφ̃ satisfy the half polarization condition(5.13). To obtain the system in obviously
Fuchsian form in that case, we split(5.14)into its trace and its traceless parts. For the trace
part we have

∂tu
a
k,a − εku

a
k,a − ṽuak,a = e−εktuck,cu

a
k,a + eλ+εktf aa (t, u, ux). (5.15)

This equation takes Fuchsian form if and only if(5.13)is satisfied and̃v > εk. The same is
verified for the traceless partT ubk,a, which satisfies an equation with left hand side

∂Tt u
k,a
b − εTk u

k,a
b . (5.16)

5.1.3. Equation for uσ′
Using the expansion ofk and the relation∂tλ = −ṽ, we find that

∂tσ
ab = 2 e2λkab + σab∂tλ = 2 e−εktσacubk,c. (5.17)

The equation forσabc gives therefore the following equation foruσ′ :

∂tu
ab
σ′,c − εσ′uabσ′,c = 2 e(εσ′−εk)t∇̃c[σacubk,c], (5.18)

which is of Fuchsian type so long asεσ′ < εk.
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5.2. Wave map equations

5.2.1. Equations for auxiliary variables
The equations resulting from the introduction of the new variablesφt, ωt are

∂tφ − φt = 0, ∂tω − ωt = 0. (5.19)

The first equation is of Fuchsian type foruφ if εΦt > εΦ, since it reads

∂tuφ − εφuφ = e(−εΦt+εΦ)tuφt . (5.20)

The second equation reads

[∂tuω + (2φt − εω)uω] − e(εΦ−εΦt )tuωt = 0. (5.21)

We replaceφt by its value given in(4.8), which we write as follows:

φt = −1

2
w̃+ 1

2
w̃(1 − cosθ) + e−εΦt tuφt . (5.22)

Since 1− cosθ falls off to zero as e−2w̃t , Eq. (5.21) is of Fuchsian type foruω if w̃ > 0
andεΦt > εΦ.

In Eqs.(2.20)to be satisfied byφa andωa, the derivatives of the VTD terms disappear,
due to the commutation of partial derivatives. The equation forφa reads

∂tuφa − εφ′uφa = e−(εΦt−εΦ′ )t(∂auφt − t∂aw), (5.23)

while the equation forωa becomes, using the expressions forωt andωa

∂tuωa + (2φt − εω′ )uωa = e−(εΦt−εΦ′ )t(∂auωt + 2φauωt ). (5.24)

These equations are of Fuchsian type so long asw̃ > 0 andεΦt > εΦ′ .

5.2.2. Equation for uΦt
The first equation,(2.5), for the wave map reads

gαβ(∇α∂βφ + 1

2
e−4φ∂αω∂βω)

≡ −e−2λ
(
∂tφt + 1

2
e−4φωtωt

)

+ e−λσab
(

∇aφb + 1

2
e−4φωaωb

)
+ gαβΓ 0

αβφt = 0.

Using the Fuchsian expansions forφt andωt together withθu = −w̃ sin θ and the value
given in Section5.1.2for e2(φ̃−φ) we find that:

∂tφt + 1

2
e−4φωtωt ≡ e−εΦt t(∂tuφt − εφtuφt ) − 1

2
w̃2 sin2 θ

+ 1

2
(e−2δφw̃ sin θ + e−εωt tuωt )

2.
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On the other hand, using the expansions forσab, φa andωa we find that:

e−λσab
(

∇aφb + 1

2
e−4φωaωb

)

≡ e−λ(σ̃ab + δσab)

×
{

∇b∂aφ̂+e−εΦ′ t∇buφa + 1

2
(e−2φ∂aω̂ + e−εωutuωa )(e

−2φ∂bω̂ + e−εω′ tuωb )

}
.

We recall that

∇b∂aφ̂ ≡ ∇b
[
∂aφ̃ + cosθ

2
Θ̃−1∂a(Θ̃− w̃t)

]
,

while under the half polarization assumption

ω̃ + e2φ̃ = constant, (5.25)

the product e−2φ∂aω̂ is given by

e−2φ∂aω̂ = −e−2δφΘ̃−1 sin θ∂a(Θ̃− w̃).

Finally we calculate

gαβΓ 0
αβ ≡ 1

2
ψ e−2λ = −e−2λ−εktuak,a. (5.26)

Inserting these computations into the first wave map equation produces an equation of
the form

∂tuφt − εΦtuφt = e−µtfφt (x, t, u, ∂u) (5.27)

which is of the Fuchsian type(5.1)(with µ > 0) so long as̃v > εΦt , andεk > εΦt .
Analogous computations show that the equation foruωt is Fuchsian presuming these

same inequalities hold.

5.3. Results for evolution

As a consequence of the calculations above we have proven the following theorem.

Theorem 5.1. There exist a collection of positive numbers {εσ, εσu, εk, εΦ, εΦt , εΦu} such
that, given analytic asymptotic data on Σ, Ã = {ṽ = w̃, λ̃, σ̃, Θ̃, φ̃, ω̃}, the Einstein-wave
map evolution system written in first order form for the unknown U, which defines g, k, Φ
and auxiliary variables by the Fuchsian expansions of Section 4, is a Fuchsian system for
U if and only if φ̃ and ω̃ satisfy the half polarization condition (5.13)and ṽ > 0. It admits
then one and only one analytic solution tending to zero at infinity.

To show that this result implies that we have a family of solutions of the Einstein-wave
map evolution system which decays to solutions of the VTD equations, we need to verify
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that for a large enought we haveΦt = ∂tΦ,Φa = ∂aΦ and the like. To show thatΦa = ∂aΦ

we use Eqs.(2.20)together with commutation of partial derivatives to show that:

∂t(φa − ∂aφ) = ∂aφt − ∂a∂tφ = 0; (5.28)

henceφa − ∂aφ is independent oft. As t tends to∞ it tends to zero because

φa − ∂aφ = e−εφ′ tuφa − e−εφt(∂auφ − εφuφ). (5.29)

It must therefore always be zero. Analogous arguments can be used to show thatωa = ∂aω

andσabc = ∇̃cσab.

6. Constraints

The solution of the evolution system satisfies the full Einstein equations so long as it
satisfies also the Einstein constraints, that is

C0 := Σ0
0 ≡ −1

2
{R(g) − k · k + τ2 − e−2λ∂tΦ · ∂tΦ} = 0,

Ca := eλΣ0
a ≡ −{∇bkba − ∂aτ + e−λ∂tΦ · ∂aΦ} = 0.

As usual we will rely on the Bianchi identities, here to construct a Fuchsian system
satisfied by the constraints. Together with the wave equation satisfied byΦ, the Bianchi
identities imply that

(3)∇αΣαβ = 0. (6.1)

Modulo the evolution equations(3)Rba − ρba = 0 that we have solved, withρba ≡ Φa ·Φb, it
holds that

(3)R− ρ = R0
0 − ρ0

0; (6.2)

hence

Σ0
0 ≡ R0

0 − ρ0
0 − 1

2
δ00((3)R− ρ) = 1

2
δ00((3)R− ρ) (6.3)

and

Σba = −1

2
δba(

(3)R− ρ) = −δbaΣ0
0. (6.4)

We use these equations and the identities

Σ0
a ≡ e−λCa, Σa0 ≡ −N2Σa0 ≡ −gabN2Σ0

b ≡ −eλgabCb (6.5)

together with the expressions for the Christoffel symbols of the metric(3)g. We find that
Eq.(6.1)can be written in the form

∂tC0 − 2 eλτC0 = gab∇a(eλCb) + gab eλ∂aλCa (6.6)
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and (after some simplifications and multiplying by eλ)

∂tCa − eλτCa = eλ∇aC0 + 2 eλ∂aλC0. (6.7)

Equivalently, we have

∂t(e
2λC0) − 2ṽe2λC0 − 2 eλτ e2λC0 = eλσab∇a(eλCb) + σab eλ∂aλeλCa (6.8)

and

∂t(e
λCa) − ṽeλCa − e2λτCa = ∇a(e2λC0). (6.9)

We see that e2λC0 and eλCa satisfy a linear homogeneous system, which admits zero as a
solution. This solution is the unique one tending to zero at infinity, so long as the system is
Fuchsian.

Lemma 6.1. The system (6.8)and(6.9) is Fuchsian, for a solution of the evolution system,
if the VTD solution satisfies Ĉ0 = 0 (i.e. ṽ2 = w̃2).

Proof. Since the coefficients of Eqs.(6.8)and(6.9)are constructed from solutions of the
evolution system we may use the expansions and estimates derived in previous sections. In
particular we calculate

eλτ ≡ ṽ+ e−εktuak,a. (6.10)

Eq.(6.8)can therefore be written as the following equation of Fuchsian type:

∂t(e
2λC0) − 4ṽe2λC0 e2λC0

= e−εktuak,a e2λC0 + eλσab∇a(eλCb) + σab eλ∂aλeλCa. (6.11)

Eq.(6.9)is not a priori in Fuchsian form for the pair (eλCa,e2λC0) in spite of the identity
(6.10). However if we use the identity

e2λC0 ≡ −1

2
{e2λR(g) − e2λk · k + e2λτ2 − ∂tΦ · ∂tΦ} (6.12)

and the propertŷC0 = 0 together with the expression forR(g) given in(5.9)we can show
that there exists a numberµ > 0 and a bounded functionF(x, t) such that we have

|e2λC0| ≤ e−µtF (x, t) and |∂a(e2λC0)| ≤ e−µtF (x, t). (6.13)

It follows that(6.9) takes Fuchsian form. �

Theorem 6.2. A solution of the evolution system satisfies the full Einstein wave map equa-
tions if and only if the half polarized asymptotic data satisfies the condition w̃ = ṽ, and
also

Θ̃ = 1 and ṽe−λ̃+2φ̃ = constant. (6.14)

Proof. To complete the proof thatC0 = Ca = 0 it suffices to show that e2λC0 and eλCa
tend to zero at infinity. We have already checked that this is true for e2λC0, as long as̃w = ṽ;
i.e. Ĉ0 = 0.
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We now study the asymptotic behavior of eλCa. If we denote byδu the difference between
a fieldu and its VTD value, we calculate (recall thatλ = λ̂, σ̂ = σ̃)

eλ(Ca − Ĉa) ≡ eλ{(∇b − ∇̃b)kba + ∇̃bδkba − ∂aδτ} + δ(Φt ·Φa) (6.15)

with

δ(Φt ·Φa) ≡ 2φtδφa + 2φ̂aδφt + 1

2
e−2φωtδ(e

−2φωa) + e−2φ̂ω̂aδ(e
−2φωt). (6.16)

We see that, in the half polarized case, the Fuchsian expansions imply that eλ(Ca − Ĉa)
tends to zero ast tends to infinity. Using the expressions fork̂ba and λ̂, we see that eλ̂Ĉa
reads:

eλ̂Ĉa ≡ 1

2
eλ̂∂a(e

−λ̂ṽ) − Φ̂t · Φ̂a ≡ 1

2
(∂aṽ− ṽ∂aλ̃+ ṽ∂aṽt) − Φ̂t · Φ̂a.

Using the expressions ofλ̂, Φ̂t, Φ̂a and the half polarization condition, we find after some
computation that

Φ̂t · Φ̂a = −w̃
{

cosθ∂aφ̃ + 1

2
Θ̃−1∂a(Θ̃− w̃t)

}
. (6.17)

Thus we find that the terms containingt disappear from eλ̂Ĉa if ṽ = w̃ andΘ̃ = 1. It follows
that eλ̂Ĉa tends to zero ast tends to infinity (recall that cosθ tends then to 1) if and only if

1

2
[∂aṽ− ṽ∂aλ̃] − ṽ∂aφ̃ = 0,

a condition equivalent to the hypothesis(6.14)of the theorem. �

Remark 6.3. In the half polarized case the VTD solution only satisfies asymptotically the
VTD momentum constraint, and only after being multiplied eλ̂.
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